PRINCIPLES OF PHARMACOLOGY

<u>PHARMACOLOGY</u> - is the study of drugs and their effects on life processes.

- General pharmacology classification, characterization, evaluation, and comparison of all drugs
- **Pharmacokinetics** Pharmacokinetics is concerned with the processes that determine the concentration of drugs in body fluids and tissues over time, including absorption, distribution, biotransformation, and excretion
- **Pharmacodynamics** biochemical and physiological effects of drugs and their mechanisms of action)
- **Clinical pharmacology** investigates new or established drugs in humans; is the basis for rational pharmacotherapy
- **Toxicology** deals with the undesirable and harmful effects of chemicals on living systems

DRUG = MEDICATION

- any substance that brings about a change in biological function through its chemical actions
- natural product, chemical substance, or pharmaceutical preparation intended for administration to a human or animal to diagnose or treat a disease

A drug may be used:

- **substitutively** Insulin
- **supportively** oral hypoglycaemic agents
- prophylactically Oral contraceptive tablets
- symptomatically -. Aspirin
- diagnostically Histamine

MODE OF ACTION - the character of an effect produced by a drug.

MECHANISM OF ACTION - the molecular and biochemical events leading to an effect.

SITE OF ACTION - the receptor sites where a drug acts to initiate a group of functions.

CELLULAR SITES OF ACTION OF DRUGS

- because drugs are very reactive, they may elicit their effects/side effects by interacting with:
- coenzymes
- enzymes
- nucleic acids
- other macromolecules
- transport mechanisms

Inert binding sites

- components of endogenous molecules
- bind a drug
- no initiation events leading to any of the drug effect
- play important role in buffering the concentration of a drug

E.g.: two plasma proteins: albumin, α_1 – acid glucoprotein

Specific and nonspecific structure - activity

relationships - an important aspect of pharmacology is to determine whether a drug effect is due to a **specific** structural component of the molecule or results from **nonspecific** drug action.

Specific drugs:

- interact with specific
- open or block ion channels
- modify transport systems
- inhibit or activate enzymes
- interfere with particular aspects of biosynthesis in microorganisms.

Specific drugs are usually <u>more potent</u> compared to nonspecific drugs. This means that:

- effects are seen with relatively lower drug concentrations
- activity is highly dependent on the chemical structure
- small structural changes can result in drastic changes in pharmacological activity
- drugs which act at the same site frequently have significant chemical similarities

Nonspecific drugs:

- do not specifically bind with a particular biological structure
- are active only in relatively high doses
- have similar activity but vastly different chemical structure
- show largely similar activity after chemical modification
- Activity of these nonspecific compounds is often related to lipophilicity (the activity differences among these compounds usually can be explained by differences in partition coefficients)
- These drugs interact with lipophilic cell components to alter cellular membrane function.

Natural sources of drugs

- **plants** alkaloids (morphine, atropine)
- microbes antibiotics (penicillin)
- animal tissues hormones (insulin)
- minerals (lithium)

Pharmaceutical preparations <u>compounded</u> <u>individually:</u>

- prepared individually for a particular patient according to the physician's prescription in a pharmacy licensed for compounding
- <u>individualization</u> the pharmacotherapy when:
- the drug in a particular dosage form is not commercially available
- the extraordinary low or high dose is needed (children, elderly people, special situations)
- patient is unable to use drug in its commercially available dosage form
- allergy on a specific excipients
- lack of standardization

<u>Manufactured</u> pharmaceutical preparations: Original pharmaceutical preparations:

- full and very extensive pharmacological/toxicological and pharmaceutical pre-clinical and clinical evaluation
- the proof of effectiveness and safety

Generic pharmaceutical preparations (authorised copies of original preparations):

- can be released after the expiration of the patent protection of the original preparation
- easier approval for clinical use due to the prior experience with the original preparation

Original vs. Generic preparations: Must be pharmaceutically equivalent:

- same active ingredient
- dose
- route of administration

Must be clinically bioequivalent:

- similar PK profile
- PK parameters (Cmax, tmax, AUC) are within 80-125 % range as compared with the original preparation

Don't have to be therapeutically equivalent:

• comparing directly the clinical effectiveness is not commonly required

<u>PHARMACODYNAMICS</u> - the study of detailed mechanism of action by which drugs produce their pharmacologic effects.

("How drugs work on the body").

The main ways by which drugs act are via interaction with <u>cell proteins:</u>

- receptors
- ion channels
- enzymes
- transport/carrier proteins

DRUG RECEPTOR:

- a macromolecular component of a cell with which a drug interacts to produce a response
- usually a **protein**
- receptors are found in the cell membrane, in the cytoplasm, and in the nucleus
- drugs often work by binding to a "receptor"
- anything that binds to a receptor is a "ligand"

ROLE OF DRUG RECEPTORS:

- determine the quantitative relations between **dose or concentration** of drug and pharmacologic **effects**
- are responsible for **selectivity** of drug action
- mediate the actions of pharmacologic antagonists

TYPES OF RECEPTORS:

1) LIGAND GATED ION CHANNEL (IONTROPIC RECEPTORS):

- signal molecule binds as a ligand at a specific site on the receptor
- conformational changes open the channel allowing ions to flow into the cell
- the change in ion concentration within the cell triggers cellular response

2) G PROTEIN COUPLED RECEPTORS:

- Drug binds to a G protein-linked receptor
- Receptor changes shape and interacts with G protein
- GDP is displaced and GTP is bound to G protein
- Active G protein binds another protein (e.g., enzyme)
- The enzyme is activated
- G protein hydrothyzes GTP back to GDP
- G protein releases from the enzyme; the reaction stops

3) KINASE LINKED RECEPTORS:

- Ligands bind to both receptors
- The two receptor polypeptides aggregate forming a dimer
- Activates the tyrosine kinase parts of the dimer
- Each phosphorylates (using ATP) the tyrosine on the

tail of the other polypeptide

- Receptor proteins are recognized by relay proteins inside the cell
- Relay proteins bind to the phosphorylated tyrosines (may activate 10 or more different transduction pathways)

4) INTRACELLULAR RECEPTORS:

- proteins located in the cytoplasm or nucleus of target cells
- the signal molecule must be able to pass through plasma membrane

SECOND MESSENGERS:

- small, nonprotein, water-soluble molecules or ions
- readily spread throughout the cell by diffusion Most widely used second messengers are:
- Cyclic Adenosine Monophosphate (cAMP)
- Calcium ions Ca²⁺ and Phosphoinositides
- Cyclic Guanosine Monophosphate (cGMP)

RELATION BETWEEN DRUG DOSE & CLINICAL RESPONSE (DOSE RESPONSE CURVES):

Arithmetic Dose Scale

- there is an increase in response with increasing dose of a drug until it reaches maximum
- rate of change is rapid at first and becomes progressively smaller as the dose is increased
- maximal effect for that drug is obtained
- increments in dose produce no further change in effect *Plateau effect*
- difficult to analyse mathematically

Log Dose Scale

- transforms hyperbolic curve to a sigmoid (almost a straight line)
- compresses dose scale
- proportionate doses occur at equal intervals
- straightens line, easier to analyse mathematically DRUG-RECEPTOR INTERACTION:
- a **drug** (D) binds to a **receptor** (R) in a reversible reaction
- $D + R \leftrightarrow DR \leftrightarrow DR^* \rightarrow \rightarrow \rightarrow \rightarrow Response$
- this conformational change leads to a series of events causing a **cellular response**

SPARE RECEPTORS:

- receptors are said to be *SPARE* when maximal response can be elicited by an agonist at a conc. that does not result in occupancy of the full complement of available receptors
- no qualitative difference form non spare receptors

Drugs are described based on the magnitude of its properties:

<u>AFFINITY</u> for the receptor – affinity is related to potency

EFFICACY

- once bound to the receptor efficacy refers to the maximal effect the drug can elicit
- maximum effect of the drug
- height of the curve on x-axis indicates the efficacy of the drug
- taller the DRC ,more efficacious the drug

POTENCY

- is a measure of how much drug is required to elicit a given response
- the lower the dose required to elicit given response, the more potent the drug is
- dose of a drug that required to produce 50% of maximal effect (ED 50)
- relative positions of the DRC on x-axis
- more left the DRC, more potent the drug

<u>ED50</u>

- it is the dose of the drug at which it gives 50% of the maximal response
- a drug with low ED₅₀ is more potent than a drug with larger ED₅₀

SLOPE OF DRUG RESPONSE CURVE (DRC) STEEP DRC

- moderate increase in dose leads to <u>more</u> increase in response
- dose <u>needs</u> individualization for different patients
- unwanted and uncommon

FLAT DRC

- moderate increase in dose leads to <u>little</u> increase in response
- dose <u>needs no</u> individualization for different patients
- desired and common

DRUG-RECEPTOR INTERACTION:

When a drug binds to a receptor the following can occur and based on this the drugs are classified:

- **antagonists** can bind to the receptor and occupy its binding site and, therefore, participate only in the first equilibrium
- **agonists** have the appropriate structural features to force the bound receptor into an active conformation (DR*)

AGONIST (Full agonist):

- a drug that binds to the receptor and activates it to produce an effect
- has affinity for receptor and efficacy
- e.g., ACh is agonist at muscarinic receptor in heart cell

PARTIAL AGONIST:

- a drug that binds to the receptor and activates it but produces a submaximal effect (by antagonising the full effect of the agonist)
- has affinity but lower efficacy than full agonist

INVERSE AGONIST:

- a drug that activates a receptor to produce an effect in the opposite direction to that of the agonist
- have affinity and negative intrinsic activity
- E.g., Flumazenil is an inverse agonist of Benzodiazepine

ANTAGONIST:

- a drug that binds to a receptor and prevents the action of an agonist
- does not have an action on its own
- has affinity but no efficacy
- E.g., Atropine is antagonist of ACh at Muscarinic receptors

COMPETITIVE ANTAGONIST:

- competes with agonist for receptor
- surmountable with increasing agonist concentration
- displaces agonist dose response curve to the right (dextral shift)
- reduces the apparent affinity of the agonist

NONCOMPETITIVE ANTAGONIST:

- produces slight dextral shift in the agonist DR curve in the low concentration range
- this looks like competitive ANT
- but, as more and more receptors are bound, the AG drug becomes incapable of eliciting a maximal effect

COMBINED EFFECT OF DRUGS:

When two drugs are given together or in quick succession 3 things can happen:

- Nothing (indifferent to each other)
- Action of one drug is facilitated by the other (SYNERGISM)
- Action of one drug may decrease or inhibit the action of other drug (ANTAGONISM)

SYNERGISM:

<u>Additive effect:</u> the effect of two drugs are in the same direction and simply add up *Effect of drug A* + B = *effect of drug A and B*

<u>Supraadditive effect (potentiation):</u> the effect of combination is greater than the individual effect of the components.

Effect of drug A+B > effect of drug A+ effect of drug B

ANTAGONISM:

Physical: based on physical property of a drug *e.g. activated charcoal adsorbs alkaloids and prevents their absorption (in alkaloid poisoning)*

<u>Chemical:</u> based on chemical properties resulting in an inactive product

e.g. chelating agents complex metals (used in heavy metal poisoning)

<u>Physiological</u>: based on physical property of a drug *e.g. activated charcoal adsorbs alkaloids and prevents their absorption (in alkaloid poisoning)*

<u>Receptor antagonism:</u> based on chemical properties resulting in an inactive product

e.g. chelating agents complex metals (used in heavy metal poisoning)

Receptor antagonism:

- an antagonist interferes with the binding of the agonist with its receptor and inhibits the generation of a response
- receptor antagonism is **specific**
- e.g. an anticholinergic will decrease the spasm of intestine induced by cholinergic agonists but not the one induced by histamine
- receptor antagonism can be <u>competitive</u> and <u>noncompetitive</u>

COMPETITIVE antagonism:

- antagonist binds with same receptor
- chemical resemblance with agonist
- parallel rightward shift of DRC
- apparently reduces potency of agonist
- intensity of response depends both on antagonist and agonist concentration
- eg: Acetylcholine and Atropine

NONCOMPETITIVE antagonism:

- another site of receptor binding
- does not resemble
- flattening of DRC
- apparently reduces efficacy of agonist
- intensity of response depends mainly on antagonist concentration
- eg: phenoxybenzamine (for pheochromocytoma)

QUANTAL DOSE RESPONSE CURVES:

• Quantal dose-effect curves are used to generate information regarding the margin of safety (Therapeutic index)

ED50 – *Median Effective Dose 50* – the dose at which 50 percent of the population or sample manifests a given effect.

TD50 – *Median Toxic Dose 50* – the dose at which 50 percent of the population manifests a given toxic effect. **LD50** – *Median Lethal Dose 50* – the dose which kills 50 percent of the subjects

THE THERAPEUTIC INDEX:

- the higher the **TI** the better the drug
- vary from 1.0 (some cancer drugs) to >1000 (penicillin)
- drugs acting on the same receptor or enzyme system often have the *same* TI (eg 50mg of hydrochlorothiazide about the same as 2.5mg of indapamide)

Clinical significance:

- Drugs with a low TI should be used with caution and needs a periodic monitoring (less safe)
- E.g. warfarin, digoxin, theophylline
- Drugs with a large TI can be used relatively safely and does not need close monitoring (highly safe)
- E.g. penicillin, paracetamol

REGULATION OF RECEPTOR NUMBERS AND RESPONSE:

Sensitization or Up-regulation of receptors:

- an increase in receptor number on the surface of target cells, making the cells more sensitive to a hormone or another agent
- prolonged/continuous use of receptor blocker
- e.g., there is an increase in uterine oxytocin receptors in the third trimester of pregnancy, promoting the contraction of the smooth muscle of the uterus
- inhibition of synthesis or release of hormone/neurotransmitter Denervation

Desensitization or Down-regulation:

- a decrease in receptor number
- prolonged/continuous use of agonist
- inhibition of degradation or uptake of agonist
- e.g., prolonged use of propranolol can DECREASE the number of β₁ receptors
- e.g., Prolonged & frequent use of short acting β₂ receptor agonists decrease the number of β₂ receptors
- clinical relevance: a patient's response to drug therapy may change over time

PHARMACEUTICAL DOSAGE FORMS

Classification according to the physical properties:

Gaseous dosage forms:

- **Sprays** are composed of various bases such as alcohol or water in a pump-type dispense
- Inhalants and Aerosols variety of forms all must be easily inhaled into the lungs; devices nebulizers and humidifiers

Liquid dosage forms:

- Solutions can be administered by all routes
- Syrups sugar-based aqueous solutions that have medications dissolved in them Good option for young children!
- Drops (eye, ear, nasal) eye drops must be sterile
- Elixirs sweetened solutions containing dissolved medication in an alcohol base
- Tinctures –alcoholic herbal extract
- **Emulsion** a dispersion system consisting of two immiscible liquids used with an emulsifier binds the two together
- **Suspension** a dispersion system where solid particles are dispersed in liquid phase

Not intended for systemic administration of drugs with high potency !

- **Injections** (available as ampoules, vials with rubber head) solutions, emulsions or suspensions
- Infusions (available in plastic bags) higher volumes over much larger times (from min to days) Sterile, pyrogen-free, isotonic!

Semisolid dosage forms:

• Ointments, Gels, Creams

Solid dosage forms:

Unshaped

• **Powders** for external/internal use

Shaped

- Tablets
- Effervescent tablets (the final dosage form is a solution)
- Sublingual tablets (under the tongue)
- Buccal tablets (between the gum and cheek)
- Chewable tablets (if swallowing difficulty and for children)
- Capsules soft and hard
- **Transdermal patches** transdermal patches designed for affixing on the skin; controlled drug delivery into the systemic circulation over time
- Suppositories (rectal, urethral, vaginal)

ROUTES OF ADMINISTRATION

Oral Route (P.O.)

- by mouth; systemic or local effect
- very convenient, the most common, the easiest, safe
- do not need to be measured
- most economical
- do not work as quickly as parenterally (IV's)
- some drugs cannot be taken orally because they are not as effective
- unpleasant taste, gastric upset, constipation, diarrhea, teeth stain
- drugs administrated with sufficient amount of water
- correct time of administration
- with food or on an empty stomach

Sublingual and Buccal Route:

- **buccal** agents are placed between the gum and cheek
- **sublingual** agents are placed under the tongue
- the medication penetrates the mouth lining and then enters the bloodstream – **systemic effect**
- tablets, spray
- Example: nitroglycerin in anginal attacks

Vaginal Route:

- for local drug administration only local effect
- **Tablets**, capsules, globules disintegrating in vagina; may also form foam
- Foams, Creams application devices
- Example: antimicrobial agents

Rectal Route:

- rectal dosage forms (suppositories, gels, creams, enemas) for **local and systemic** drug administration
- it can bypass the liver there may be no first pass effect
- when patient cannot swallow the drug (unconsciousness, vomiting, serious GIT disturbances)
- useful for children
- uncomfortable (poor compliance)
- actual amount of drug absorbed is hard to predict
- local irritation of rectal mucosa
- low stability during at high temp.

Topical Route:

- effects range from **localized** (at the site of action) to **systemic** (absorbed into the blood stream)
- easy application
- dosing is difficult
- Gaseous dosage forms sprays
- Liquid dosage forms lotions, shampoo, foam
- Semisolid dosage forms gels, creams, ointments
- Solid dosage forms dusting powder
- Example: antimicrobial

Transdermal Route:

- Transdermal drug delivery systems (TDDS)
- pain- and stress-free
- easily administered no need for trained specialist
- long-term drug delivery with minimal fluctuations of drug concentrations
- good compliance
- delivery of the drug can be immediately discontinued
- eliminate a possible upset stomach
- not feasible for all API
- local reactions/irritation
- Examples: hormones, opioid analgesics, nitroglycerine, nicotine

Parenteral Route:

- parenteral comes from the Greek and means "side of intestine" or "outside of intestine"
- for medications entering the body through any route **other than orally** through the gastrointestinal system
- Intravenous (IV), Intramuscular (IM), Subcutaneous (SC)

It can be a approach of choice in the case of:

- problems with oral absorption (poor/erratic)
- problems with stability of API in GIT (pH, enzymes)
- uncooperative patients (unconsciousness, vomiting)
- urgent need for rapid onset of action (emergencies)

Limited use due to:

- non-compliance (phobias, children)
- higher risk of adverse reactions (pain/irritation at the site of injection)
- accidental extravasation of some drugs tissue inflammation, necrosis
- need for trained personnel using aseptic procedures
- more expensive
- once a drug is injected, there is little time to alter its course

Local drug administration into the eye:

- high local concentration
- lower systemic adverse reactions
- minor effects on vision liquid dosage forms (drops)
- API exposure is longer semisolid dosage forms (gels, ointments) can hinder vision
- slow release of API eye inserts
- if not kept sterile during use, can introduce bacteria into the area being treated
- do not last as long as other treatments blinking of the eye and tearing
- dosage accuracy
- local hypersensitivity
- for infections, inflammation, and glaucoma

THE PRESCRIPTION

• is a written order for medication to be used for the diagnosis, prevention, or treatment of a specific patient's disease by a licensed physician, dentist, or veterinarian

THE PRESCRIPTION CONSISTS OF:

Part of the prescription	Information
the superscription	 date patient's data: name, address, weight, age symbol of the prescription "Rx"
the inscription	 the name, amount, strength (dose) of the drug
the subscription	 the instruction to the pharmacist, how to prepare or dispense the drug
the signa (the transcription)	 the instruction for the patient, how to take the prescribed drug
the data of the prescriber	 the name and signature of the prescriber the address, the phone number the professional degree and registration number of the prescriber

CLASSES OF PRESCRIPTION ORDERS

- **Precompounded prescription order** calls for a drug or mixture of drugs supplied by the pharmaceutical company by its official or proprietary name and in a form that the pharmacist dispenses without pharmaceutical alteration.
- Extemporaneous prescription order (also called compounded) is the type in which the physician selects the drugs, doses, and pharmaceutical form that he desires and the pharmacist prepares the medication.

THE ORDER OF INGREDIENTS

- Basis a principal drug, that gives the prescription its chief action
- Adjuvant a drug that aids or increases the action of the principal ingredient
- Corrective a substance which modifies or corrects undesirable effects of the basis or adjuvant
- Vehicle an agent used as the solvent in the solution, to increase the bulk, or to dilute the mixture

The prescription writing – general rules:

- poor handwriting is a well-known and preventable cause of dispensing errors
- all orders should be written using metric measurements of weight and volume
- Arabic numerals are preferable to Roman numerals
- use leading zeros (0.125 mg, not .125 mg)
- don't use trailing zeros (5 mg, not 5.0 mg)
- avoid abbreviating drug names (For example: an order for administration of magnesium sulphate must not be abbreviated "MS", as this may result in administration of morphine sulphate)
- avoid abbreviating directions for drug administration

COMPLIANCE

- may be defined as the extent to which the patient follows a regimen prescribed by a healthcare professional
- the patient is the final and important determinant of how successful a therapeutic regimen will be
- collaborative interaction between physician and patient in which each brings an expertise that helps to determine the course of therapy
- the physician the medical expert
- the patient the expert on himself, his beliefs, values, and lifestyle

Suggestions for improving Patient Compliance provide respectful communication:

- ask patients how they take medicine
- develop satisfactory, collaborative relationship between physician and patient
- encourage pharmacist involvement
- provide and encourage use of medication counselling
- give precise, clear instructions, with most important information given first
- support oral instructions with easy-to-read written information
- simplify whenever possible
- assess patient's literacy and comprehension and modify educational counselling as needed
- don't rely on patient knowledge about his or her disease
- use mechanical compliance aids as needed (sectioned pill boxes, compliance packaging, color-coding)
- use optimal dosage form and schedule for the individual patient
- find solutions when physical or sensory disabilities are present (use non-safety caps on bottles, use large type on labels and written material, place tape marks on syringes)
- enlist support and assistance from family or caregivers
- use behavioural techniques such as:
- goal setting
- self-monitoring
- cognitive restructuring
- skills training
- contracts
- positive reinforcement

Consequences of <u>noncompliance</u>:

- lack of the intended therapeutic benefits
- recurrence or worsening of the illness
- emergence of antibiotic-resistant microorganisms
- prescribing of a larger dose or a more potent agent that could lead to toxicity if compliance is improved